K_{sp} Problems - Set IV – Titrations

1. An ace chemistry student does a titration to determine the concentration of Co^{2+} in a solution. She finds that 10.7 ml of the Co^{2+} solution requires 15.2 ml of 0.01 M Na₂S to reach the endpoint of the titration. The reaction is:

i. $\text{Co}^{2+}_{(aq)}$ + $\text{Na}_2\text{S}_{(aq)} \rightarrow \text{CoS}_{(s)}$ + 2 $\text{Na}^+_{(aq)}$

- b. How many moles of Na₂S was used in the titration ? (0.000152mol)
- c. What is the molarity of the Co^{2+} solution ? (0.014M)
- d. Assume that the Co^{2+} solution was a saturated solution of CoCO_3 , determine the K_{sp} value of cobalt carbonate. Start by writing a equilibrium equation that represents the saturated solution. (1.96x10⁻⁴)
- 2. A 20.0mL of lead solution (Pb²⁺) of unknown concentration was titrated using 0.005M Cl⁻. The ace chemistry student finds that it takes 12.2 ml of the Cl⁻ solution to reach the endpoint of the titration. The reaction is: Pb²⁺+2Cl⁻ \rightarrow PbCl²
 - a. Calculate the molarity of the lead solution. (answer: 1.5×10^{-3} M)
 - b. Assume the unknown lead solution was a saturated solution of lead iodide, PbI_2 . Calculate the K_{sp} of lead iodide. (answer : $1.4x10^{-8}$)
- 3. An ace chemistry student does a titration to determine the concentration of mercury ions, Hg²⁺, in a sample of lake water. She places a 15.0 ml sample of the lake water in a small flask and adds three drops of an indicator. She finds that it takes 7.5 ml of a 0.000005 M I⁻ solution to reach the endpoint of the titration. The reaction involved is

$$Hg^{2+}$$
 + 2 I⁻ \rightarrow HgI_2 .

- a. Calculate the molarity of the Hg²⁺ lake water. (ans. 1.25×10^{-6} M)
- b. Assume that the lake water was a saturated solution of HgS, what is the K_{SD} of HgS? (1.56x10⁻¹²)